Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 468, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745142

RESUMO

BACKGROUND: Plant-specific TIFY proteins are widely found in terrestrial plants and play important roles in plant adversity responses. Although the genome of loquat at the chromosome level has been published, studies on the TIFY family in loquat are lacking. Therefore, the EjTIFY gene family was bioinformatically analyzed by constructing a phylogenetic tree, chromosomal localization, gene structure, and adversity expression profiling in this study. RESULTS: Twenty-six EjTIFY genes were identified and categorized into four subfamilies (ZML, JAZ, PPD, and TIFY) based on their structural domains. Twenty-four EjTIFY genes were irregularly distributed on 11 of the 17 chromosomes, and the remaining two genes were distributed in fragments. We identified 15 covariate TIFY gene pairs in the loquat genome, 13 of which were involved in large-scale interchromosomal segmental duplication events, and two of which were involved in tandem duplication events. Many abiotic stress cis-elements were widely present in the promoter region. Analysis of the Ka/Ks ratio showed that the paralogous homologs of the EjTIFY family were mainly subjected to purifying selection. Analysis of the RNA-seq data revealed that a total of five differentially expressed genes (DEGs) were expressed in the shoots under gibberellin treatment, whereas only one gene was significantly differentially expressed in the leaves; under both low-temperature and high-temperature stresses, there were significantly differentially expressed genes, and the EjJAZ15 gene was significantly upregulated under both low- and high-temperature stress. RNA-seq and qRT-PCR expression analysis under salt stress conditions revealed that EjJAZ2, EjJAZ4, and EjJAZ9 responded to salt stress in loquat plants, which promoted resistance to salt stress through the JA pathway. The response model of the TIFY genes in the jasmonic acid pathway under salt stress in loquat was systematically summarized. CONCLUSIONS: These results provide a theoretical basis for exploring the characteristics and functions of additional EjTIFY genes in the future. This study also provides a theoretical basis for further research on breeding for salt stress resistance in loquat. RT-qPCR analysis revealed that the expression of one of the three EjTIFY genes increased and the expression of two decreased under salt stress conditions, suggesting that EjTIFY exhibited different expression patterns under salt stress conditions.


Assuntos
Eriobotrya , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Eriobotrya/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Cromossomos de Plantas/genética
2.
PLoS One ; 19(4): e0299261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635506

RESUMO

'Allen Eureka' is a bud variety of Eureka lemon with excellent fruiting traits, but severe winter defoliation affects the following year's yield, and the response mechanism of lemon defoliation is currently unknown. Two lemon cultivars ('Allen Eureka' and 'Yunning No. 1') with different defoliation traits were used as materials to investigate the molecular regulatory mechanisms of different leaf abscission periods in lemons. The petiole abscission zone was collected at three different defoliation stages, namely, the predefoliation stage (k15), the middefoliation stage (k30), and the postdefoliation stage (k45). Transcriptome sequencing was performed to analyze the gene expression differences between these two cultivars. A total of 1141, 2695, and 1433 differentially expressed genes (DEGs) were obtained in k15, k30, and k45, respectively, and the number of DEGs in k30 was the largest. GO analysis revealed that the DEGs between the two cultivars were mainly enriched in processes related to hydrolase activity, chitinase activity, oxidoreductase activity, and transcription regulator activity in the defoliation stages. KEGG analysis showed that the DEGs were concentrated in k30, which involved plant hormone signal transduction, phenylpropanoid biosynthesis, and biosynthesis of amino acids. The expression trends of some DEGs suggested their roles in regulating defoliation in Lemon. Seven genes were obtained by WGCNA, including sorbitol dehydrogenase (CL9G068822012_alt, CL9G068820012_alt, CL9G068818012_alt), abscisic acid 8'-hydroxylase (CL8G064053012_alt, CL8G064054012_alt), and asparagine synthetase (CL8G065162012_alt, CL8G065151012_alt), suggesting that these genes may be involved in the regulation of lemon leaf abscission.


Assuntos
Secas , Transcriptoma , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo
3.
PeerJ ; 12: e17218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685937

RESUMO

'Allen Eureka' is a bud variety of Eureka lemon with excellent fruiting traits. However, it suffers from severe winter defoliation that leads to a large loss of organic nutrients and seriously affects the tree's growth and development as well as the yield of the following year, and the mechanism of its response to defoliation is still unclear. In order to investigate the molecular regulatory mechanisms of different leaf abscission periods in lemon, two lemon cultivars ('Allen Eureka' and 'Yunning No. 1') with different defoliation traits were used as materials. The petiole abscission zone (AZ) was collected at three different defoliation stages, namely, the pre-defoliation stage (CQ), the mid-defoliation stage (CZ), and the post-defoliation stage (CH). Transcriptome sequencing was performed to analyze the gene expression differences between these two cultivars. A total of 898, 4,856, and 3,126 differentially expressed genes (DEGs) were obtained in CQ, CZ, and CH, respectively, and the number of DEGs in CZ was the largest. GO analysis revealed that the DEGs between the two cultivars were mainly enriched in processes related to oxidoreductase, hydrolase, DNA binding transcription factor, and transcription regulator activity in the defoliation stages. KEGG analysis showed that the DEGs were concentrated in CZ and involved plant hormone signal transduction, phenylpropanoid biosynthesis, glutathione metabolism, and alpha-linolenic acid metabolism. The expression trends of some DEGs suggested their roles in regulating defoliation in lemon. Eight gene families were obtained by combining DEG clustering analysis and weighted gene co-expression network analysis (WGCNA), including ß-glucosidase, AUX/IAA, SAUR, GH3, POD, and WRKY, suggesting that these genes may be involved in the regulation of lemon leaf abscission. The above conclusions enrich the research related to lemon leaf abscission and provide reliable data for the screening of lemon defoliation candidate genes and analysis of defoliation pathways.


Assuntos
Citrus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Transcriptoma , Citrus/genética , Citrus/metabolismo , Citrus/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
PeerJ ; 12: e17001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436028

RESUMO

The risk of pathogenic bacterial invasion in plantations has increased dramatically due to high environmental climate change and has seriously affected sweet orange fruit quality. MADS genes allow plants to develop increased resistance, but functional genes for resistance associated with pathogen invasion have rarely been reported. MADS gene expression profiles were analyzed in sweet orange leaves and fruits infested with Lecanicillium psalliotae and Penicillium digitatum, respectively. Eighty-two MADS genes were identified from the sweet orange genome, and they were classified into five prime subfamilies concerning the Arabidopsis MADS gene family, of which the MIKC subfamily could be subdivided into 13 minor subfamilies. Protein structure analysis showed that more than 93% of the MADS protein sequences of the same subfamily between sweet orange and Arabidopsis were very similar in tertiary structure, with only CsMADS8 and AG showing significant differences. The variability of MADS genes protein structures between sweet orange and Arabidopsis subgroups was less than the variabilities of protein structures within species. Chromosomal localization and covariance analysis showed that these genes were unevenly distributed on nine chromosomes, with the most genes on chromosome 9 and the least on chromosome 2, with 36 and two, respectively. Four pairs of tandem and 28 fragmented duplicated genes in the 82 MADS gene sequences were found in sweet oranges. GO (Gene Ontology) functional enrichment and expression pattern analysis showed that the functional gene CsMADS46 was strongly downregulated of sweet orange in response to biotic stress adversity. It is also the first report that plants' MADS genes are involved in the biotic stress responses of sweet oranges. For the first time, L. psalliotae was experimentally confirmed to be the causal agent of sweet orange leaf spot disease, which provides a reference for the research and control of pathogenic L. psalliotae.


Assuntos
Arabidopsis , Citrus sinensis , Humanos , Citrus sinensis/genética , Arabidopsis/genética , Sequência de Aminoácidos , Bactérias , Doces
5.
BMC Genomics ; 25(1): 12, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166720

RESUMO

BACKGROUND: GRAS is a family of plant-specific transcription factors (TFs) that play a vital role in plant growth and development and response to adversity stress. However, systematic studies of the GRAS TF family in kiwifruit have not been reported. RESULTS: In this study, we used a bioinformatics approach to identify eighty-six AcGRAS TFs located on twenty-six chromosomes and phylogenetic analysis classified them into ten subfamilies. It was found that the gene structure is relatively conserved for these genes and that fragmental duplication is the prime force for the evolution of AcGRAS genes. However, the promoter region of the AcGRAS genes mainly contains cis-acting elements related to hormones and environmental stresses, similar to the results of GO and KEGG enrichment analysis, suggesting that hormone signaling pathways of the AcGRAS family play a vital role in regulating plant growth and development and adversity stress. Protein interaction network analysis showed that the AcGRAS51 protein is a relational protein linking DELLA, SCR, and SHR subfamily proteins. The results demonstrated that 81 genes were expressed in kiwifruit AcGRAS under salt stress, including 17 differentially expressed genes, 13 upregulated, and four downregulated. This indicates that the upregulated AcGRAS55, AcGRAS69, AcGRAS86 and other GRAS genes can reduce the salt damage caused by kiwifruit plants by positively regulating salt stress, thus improving the salt tolerance of the plants. CONCLUSIONS: These results provide a theoretical basis for future exploration of the characteristics and functions of more AcGRAS genes. This study provides a basis for further research on kiwifruit breeding for resistance to salt stress. RT-qPCR analysis showed that the expression of 3 AcGRAS genes was elevated under salt stress, indicating that AcGRAS exhibited a specific expression pattern under salt stress conditions.


Assuntos
Genoma de Planta , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Tolerância ao Sal
6.
Curr Issues Mol Biol ; 45(5): 3772-3786, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37232712

RESUMO

The area of saline land in the world is quite large, and there is broad room for its development and usage. 'Xuxiang' is an Actinidia deliciosa variety that is tolerant to salt and can be planted in an area of light-saline land, and has good comprehensive characteristics and high economic value. However, the molecular mechanism of salt tolerance is unknown at present. To understand the molecular mechanism of salt tolerance, the leaves of A. deliciosa 'Xuxiang' were used as explants to establish a sterile tissue culture system, and plantlets were obtained using this system. One percent concentration (w/v) of sodium chloride (NaCl) was employed to treat the young plantlets cultured in Murashige and Skoog (MS) medium, then RNA-seq was used for transcriptome analysis. The results showed that the genes related to salt stress in the phenylpropanoid biosynthesis pathway and the anabolism of trehalose and maltose pathways were up-regulated; however, those genes in the plant hormone signal transduction and metabolic pathways of starch, sucrose, glucose, and fructose were down-regulated after salt treatment. The expression levels of ten genes that were up-regulated and down-regulated in these pathways were confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. The salt tolerance of A. deliciosa might be related to the expression level changes in the genes in the pathways of plant hormone signal transduction, phenylpropanoid biosynthesis, and starch, sucrose, glucose, and fructose metabolism. The increased expression levels of the genes encoding alpha-trehalose-phosphate synthase, trehalose-phosphatase, alpha-amylase, beta-amylase, feruloyl-CoA 6-hydroxylase, ferulate 5-hydroxylase, and coniferyl-alcohol glucosyl transferase might be vital to the salt stress response of the young A. deliciosa plants.

7.
Curr Issues Mol Biol ; 45(2): 1250-1271, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36826027

RESUMO

WRKY transcription factors (TFs) play a vital role in plant stress signal transduction and regulate the expression of various stress resistance genes. Sweet orange (Citrus sinensis) accounts for a large proportion of the world's citrus industry, which has high economic value, while Penicillium digitatum is a prime pathogenic causing postharvest rot of oranges. There are few reports on how CsWRKY TFs play their regulatory roles after P. digitatum infects the fruit. In this study, we performed genome-wide identification, classification, phylogenetic and conserved domain analysis of CsWRKY TFs, visualized the structure and chromosomal localization of the encoded genes, explored the expression pattern of each CsWRKY gene under P. digitatum stress by transcriptome data, and made the functional prediction of the related genes. This study provided insight into the characteristics of 47 CsWRKY TFs, which were divided into three subfamilies and eight subgroups. TFs coding genes were unevenly distributed on nine chromosomes. The visualized results of the intron-exon structure and domain are closely related to phylogeny, and widely distributed cis-regulatory elements on each gene played a global regulatory role in gene expression. The expansion of the CSWRKY TFs family was probably facilitated by twenty-one pairs of duplicated genes, and the results of Ka/Ks calculations indicated that this gene family was primarily subjected to purifying selection during evolution. Our transcriptome data showed that 95.7% of WRKY genes were involved in the transcriptional regulation of sweet orange in response to P. digitatum infection. We obtained 15 differentially expressed genes and used the reported function of AtWRKY genes as references. They may be involved in defense against P. digitatum and other pathogens, closely related to the stress responses during plant growth and development. Two interesting genes, CsWRKY2 and CsWRKY14, were expressed more than 60 times and could be used as excellent candidate genes in sweet orange genetic improvement. This study offers a theoretical basis for the response of CSWRKY TFs to P. digitatum infection and provides a vital reference for molecular breeding.

8.
Gene ; 854: 147117, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36526123

RESUMO

BACKGROUND: The NBS-LRR (nucleotide-binding site-leucine-rich repeat gene) gene family, known as the plant R (resistance) gene family with the most members, plays a significant role in plant resistance to various external adversity stresses. The NBS-LRR gene family has been researched in many plant species. Citrus is one of the most vital global cash crops, the number one fruit group, and the third most traded agricultural product world wild. However, as one of the largest citrus species, a comprehensive study of the NBS-LRR gene family has not been reported on sweet oranges. METHODS: In this study, NBS-LRR genes were identified from the Citrus sinensis genome (v3.0), with a comprehensive analysis of this gene family performed, including phylogenetic analysis, gene structure, cis-acting element of a promoter, and chromosomal localization, among others. The expression pattern of NBS-LRR genes was analyzed when sweet orange fruits were infected by Penicillium digitatum, employing experimental data from our research group. It first reported the expression patterns of NBS-LRR genes under abiotic stresses, using three transcript data from NCBI (National Center for Biotechnology Information). RESULTS: In this study, 111 NBS-LRR genes were identified in the C. sinensis genome (v3.0) and classified into seven subfamilies according to their N-terminal and C-terminal domains. The phylogenetic tree results indicate that genes containing only the NBS structural domain are more ancient in the sweet orange NBS-LRR gene family. The chromosome localization results showed that 111 NBS-LRR genes were distributed unevenly on nine chromosomes, with the most genes distributed on chromosome 1. In addition, we identified a total of 18 tandem duplication gene pairs in the sweet orange NBS-LRR gene family, and based on the Ka/Ks ratio, all of the tandem duplication genes underwent purifying selection. Transcriptome data analysis showed a significant number of NBS-LRR genes expressed under biotic and abiotic stresses, and some reached significantly different levels of expression. It indicates that the NBS-LRR gene family is vital in resistance to biotic and abiotic stresses in sweet oranges. CONCLUSION: Our study provides the first comprehensive framework on the NBS-LRR family of genes, which provides a basis for further in-depth studies on the biological functions of NBS-LRR in growth, development, and response to abiotic stresses in sweet orange.


Assuntos
Citrus sinensis , Citrus , Proteínas de Plantas/metabolismo , Citrus sinensis/genética , Filogenia , Família Multigênica , Genes de Plantas , Citrus/genética , Genoma de Planta
9.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203241

RESUMO

Catalase (CAT) is one of the key enzymes involved in antioxidant defense systems and mainly scavenges H2O2 and plays a vital role in plant growth, development, and various adverse stresses. To date, a systematic study of the CAT gene family in rubber tree has not been reported. In this study, five HbCAT gene family members were identified from the rubber tree genome, and these were mainly clustered into two subfamilies. Gene structure and motif analysis showed that exon-intron and motif patterns were conserved across different plant species. Sequence analysis revealed that HbCAT proteins contain one active catalytic site, one heme-ligand signature sequence, three conserved amino acid residues (His, Tyr, and Asn), and one peroxisome-targeting signal 1 (PTS1) sequence. Fragment duplication is a selection pressure for the evolution of the HbCAT family based on Ka/Ks values. Analysis of cis-acting elements in the promoters indicated that HbCAT gene expression might be regulated by abscisic acid (ABA), salicylic acid (SA), and MYB transcription factors; furthermore, these genes might be involved in plant growth, development, and abiotic stress responses. A tissue-specific expression analysis showed that HbCATs gradually increased with leaf development and were highly expressed in mature leaves. Gene expression profiling exhibited the differential expression of the HbCATs under cold, heat, drought, and NaCl stresses. Our results provide comprehensive information about the HbCAT gene family, laying the foundation for further research on its function in rubber tree.


Assuntos
Hevea , Catalase/genética , Hevea/genética , Peróxido de Hidrogênio , Íntrons , Hormônios
10.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203426

RESUMO

Paeonia delavayi var. lutea, Paeonia delavayi var. angustiloba, and Paeonia ludlowii are Chinese endemics that belong to the Paeoniaceae family and have vital medicinal and ornamental value. It is often difficult to classify Paeoniaceae plants based on their morphological characteristics, and the limited genomic information has strongly hindered molecular evolution and phylogenetic studies of Paeoniaceae. In this study, we sequenced, assembled, and annotated the chloroplast genomes of P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii. The chloroplast genomes of these strains were comparatively analyzed, and their phylogenetic relationships and divergence times were inferred. These three chloroplast genomes exhibited a typical quadripartite structure and were 152,687-152,759 bp in length. Each genome contains 126-132 genes, including 81-87 protein-coding genes, 37 transfer RNAs, and 8 ribosomal RNAs. In addition, the genomes had 61-64 SSRs, with mononucleotide repeats being the most abundant. The codon bias patterns of the three species tend to use codons ending in A/U. Six regions of high variability were identified (psbK-psbL, trnG-UCC, petN-psbM, psbC, rps8-rpl14, and ycf1) that can be used as DNA molecular markers for phylogenetic and taxonomic analysis. The Ka/Ks ratio indicates positive selection for the rps18 gene associated with self-replication. The phylogenetic analysis of 99 chloroplast genomes from Saxifragales clarified the phylogenetic relationships of Paeoniaceae and revealed that P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii are monophyletic groups and sisters to P. delavayi. Divergence time estimation revealed two evolutionary divergences of Paeoniaceae species in the early Oligocene and Miocene. Afterward, they underwent rapid adaptive radiation from the Pliocene to the early Pleistocene when P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii formed. The results of this study enrich the chloroplast genomic information of Paeoniaceae and reveal new insights into the phylogeny of Paeoniaceae.


Assuntos
Benzenossulfonatos , Genoma de Cloroplastos , Magnoliopsida , Paeonia , Saxifragales , Filogenia , Evolução Biológica
11.
Life (Basel) ; 12(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36295009

RESUMO

The cold-resistant mechanism of yellow kiwifruit associated with gene regulation is poorly investigated. In this study, to provide insight into the causes of differences in low-temperature tolerance and to better understand cold-adaptive mechanisms, we treated yellow tetraploid kiwifruit 'SWFU03' tissue culture plantlets at low temperatures, used these plantlets for transcriptome analysis, and validated the expression levels of ten selected genes by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. A number of 1630 differentially expressed genes (DEGs) were identified, of which 619 pathway genes were up-regulated, and 1011 were down-regulated in the cold treatment group. The DEGs enriched in the cold tolerance-related pathways mainly included the plant hormone signal transduction and the starch and sucrose metabolism pathway. RT-qPCR analysis confirmed the expression levels of eight up-regulated genes in these pathways in the cold-resistant mutants. In this study, cold tolerance-related pathways (the plant hormone signal transduction and starch and sucrose metabolism pathway) and genes, e.g., CEY00_Acc03316 (abscisic acid receptor PYL), CEY00_Acc13130 (bZIP transcription factor), CEY00_Acc33627 (TIFY protein), CEY00_Acc26744 (alpha-trehalose-phosphate synthase), CEY00_Acc28966 (beta-amylase), CEY00_Acc16756 (trehalose phosphatase), and CEY00_Acc08918 (beta-amylase 4) were found.

12.
PeerJ ; 10: e14251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312747

RESUMO

Background: The rubber tree (Hevea brasiliensis) is the only species capable of producing high-quality natural rubber for commercial use, and is often subjected to various abiotic stresses in non-traditional rubber plantation areas. Superoxide dismutase (SOD) is a vital metalloenzyme translated by a SOD gene family member and acts as a first-line of protection in plant cells by catalysing the disproportionation of reactive oxygen species (ROS) to produce H2O2 and O2. However, the SOD gene family is not reported in rubber trees. Methods: Here, we used hidden markov model (HMM) and BLASTP methods to identify SOD genes in the H. brasiliensis genome. Phylogenetic tree, conserved motifs, gene structures, cis elements, and gene ontology annotation (GO) analyses were performed using MEGA 6.0, MEME, TBtools, PlantCARE, and eggNOG database, respectively. HbSOD gene expression profiles were analysed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results: We identified nine HbSOD genes in the rubber tree genome, including five HbCSDs, two HbFSDs, and two HbMSDs. Phylogenetic relationship analysis classified the SOD proteins from the rubber tree and other related species into three subfamilies. The results of gene structure and conserved motif analysis illustrated that most HbSOD genes have similar exon-intron numbers and conserved motifs in the same evolutionary branch. Five hormone-related, four stress-related, and light-responsive elements were detected in the HbSODs' promoters. HbSODs were expressed in different tissues, gradually increased with leaf development, and were abundantly expressed in mature leaves. HbCSD2 and HbCSD4 was significantly upregulated under low and high temperatures, and salt stress, except for HbCSD2, by heat. Furthermore, most HbSOD genes were significantly upregulated by drought, except HbMSD2. These findings imply that these genes may play vital roles in rubber tree stress resistance. Our results provide a basis for further studies on the functions of HbSOD genes in rubber trees and stress response mechanisms.


Assuntos
Hevea , Hevea/genética , Filogenia , Peróxido de Hidrogênio , Estresse Fisiológico/genética , Superóxido Dismutase/genética
13.
Arch Microbiol ; 204(9): 556, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35964278

RESUMO

The 'Kyoho' grape (Vitaceae, Plantae) has large ears, plenty of flesh, and rich nutrition and is planted across a large area in China. There are few reports on this variety in winemaking, especially on the dynamic changes of fungi in the wine fermentation broth. In this study, we used the 'Kyoho' grapes as raw materials and adopted a high throughput to analyze dynamic changes in fungal species composition of the natural fermentation broth at four time points: day 1 (D1P), day 3 (D3P), day 5 (D5P), and day 15 (D15P). Changes in fungal metabolic pathways and dominant yeasts were also analyzed. A total of 78 families, 110 genera, and 137 species were detected, in the natural fermentation broth samples. Forty-nine families, 60 genera, and 72 species were found in the control check (CK). A total of 66 differential metabolic pathways were enriched; of those, 41 were up-regulated compared to CK, such as CDP-diacylglycerol biosynthesis I (PWY 5667), chitin degradation to ethanol (PWY 7118), and the super pathway of phosphatidate biosynthesis (PWY 7411). Changes in fungal metabolic pathways were in line with the dynamic changes of dominant yeast species in the whole process of fermentation. Pichia kluyveri, P. membranifaciens, and Citeromyces matritensis are the dominant species in the later stages of natural fermentation. These yeast species may play vital roles in the 'Kyoho' wine industry in the future.


Assuntos
Vitis , Vinho , Fermentação , Sucos de Frutas e Vegetais , Humanos , Vitis/microbiologia , Vinho/microbiologia , Leveduras
14.
PeerJ ; 10: e13286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462763

RESUMO

'Hongyang' kiwifruit (Actinidia chinensis Planch.) is an ideal kiwifruit wine variety. At present, there is no research on the dynamic changes of yeast during the natural fermentation of kiwifruit wine. In this study, a high-throughput was employed to analyze the fungal population composition and diversity in the samples cultured in yeast extract peptone dextrose (YPD) medium and enriched in the natural fermentation process of 'Hongyang' kiwifruit at four time points, day one (D1T), day three (D3T), day five (D5T), and day fifteen (D15T). Five hundred and eighty-two operational taxonomic units (OTUs) were obtained from 131 genera and 178 species samples. The diversity analysis results showed that in the early natural fermentation stage, the dominant species was Aureobasidium pullulans, and as natural fermentation proceeded, the genus Pichia became the dominant species. Pichia kluyveri was an important species at the later stages of natural fermentation. An analysis of the metabolic pathways shows that P. kluyveri plays an aromatic-producing role in the natural fermentation of 'Hongyang' kiwifruit. These results could provide a theoretical basis for the studies of kiwifruit fungal diversity and fungal changes during fermentation. The findings could fix a major deficiency in the production of kiwifruit fruit wine, which lacks a specific flavor-producing yeast species or strain.


Assuntos
Actinidia , Actinidia/metabolismo , Frutas/metabolismo , Fermentação
15.
Cells ; 11(4)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35203287

RESUMO

Saccharomyces uvarum is one of the few fermentative species that can be used in winemaking, but its weak sulfite tolerance is the main reason for its further use. Previous studies have shown that the expression of the methionine synthase gene (MET4) is upregulated in FZF1 (a gene encoding a putative zinc finger protein, which is a positive regulator of the transcription of the cytosolic sulfotransferase gene SSU1) overexpression transformant strains, but its exact function is unknown. To gain insight into the function of the MET4 gene, in this study, a MET4 overexpression vector was constructed and transformed into S. uvarum strain A9. The MET4 transformants showed a 20 mM increase in sulfite tolerance compared to the starting strain. Ninety-two differential genes were found in the transcriptome of A9-MET4 compared to the A9 strain, of which 90 were upregulated, and two were downregulated. The results of RT-qPCR analyses confirmed that the expression of the HOMoserine requiring gene (HOM3) in the sulfate assimilation pathway and some fermentation-stress-related genes were upregulated in the transformants. The overexpression of the MET4 gene resulted in a significant increase in sulfite tolerance, the upregulation of fermentation-stress-related gene expression, and significant changes in the transcriptome profile of the S. uvarum strain.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proteínas Fúngicas , Saccharomyces , Sulfitos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Sulfitos/metabolismo , Regulação para Cima
16.
Mitochondrial DNA B Resour ; 7(1): 10-11, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34912955

RESUMO

Callianthe picta likes a warm and humid climate, is resistant to barrenness, and is easy to reproduce. Its petals and leaves can promote blood circulation and remove blood stasis, and can also be used to relax the muscles and collaterals. In this study, we sequenced the complete chloroplast genome sequence of C. picta to investigate its phylogenetic relationship in the family Abutilon. The complete chloroplast size of C. picta is 160,398 bp, including a large single-copy (LSC) region of 89,088 bp, a small single-copy (SSC) region of 20,138 bp, a pair of invert repeats (IRs) regions of 25,586 bp. The GC content of the whole complete chloroplast genome is 37.0%. We annotated 128 genes in the genome in detail, including 84 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Phylogenetic analysis indicated that C. picta was closely related to Abutilon theophrati.

17.
PeerJ ; 8: e10204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194408

RESUMO

Triploid Chinese white poplar (Populus tomentosa Carr., Salicaceae) has stronger advantages in growth and better stress resistance and wood quality than diploid P. tomentosa. Using transcriptome sequencing technology to identify candidate transcriptome-based markers for growth vigor in young tree tissue is of great significance for the breeding of P. tomentosa varieties in the future. In this study, the cuttings of diploid and triploid P. tomentosa were used as plant materials, transcriptome sequencing was carried out, and their tissue culture materials were used for RT-qPCR verification of the expression of genes. The results showed that 12,240 differentially expressed genes in diploid and triploid P. tomentosa transcripts were annotated and enriched into 135 metabolic pathways. The top six pathways that enriched the most significantly different genes were plant-pathogen interaction, phenylpropanoid biosynthesis, MAPK signalling pathway-plant, ascorbate and aldarate metabolism, diterpenoid biosynthesis, and the betalain biosynthesis pathway. Ten growth-related genes were selected from pathways of plant hormone signal transduction and carbon fixation in photosynthetic organisms for RT-qPCR verification. The expression levels of MDH and CYCD3 in tissue-cultured and greenhouse planted triploid P. tomentosa were higher than those in tissue-cultured diploid P. tomentosa, which was consist ent with the TMM values calculated by transcriptome.

18.
R Soc Open Sci ; 7(9): 201201, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33047064

RESUMO

The ARBORKNOX1 (ARK1) gene is an important gene for regulating plant growth and development; however, transcriptomic responses of enhancing expression of ARK1 gene in poplar are poorly investigated. To provide insight into the gene function of the ARK1 gene in poplar, the ARK1 transgenic poplar '717' and '84 K' lines were obtained, the morphology of transgenic plants was observed, and transcriptome profiles were compared. The results showed that there were multiple branches in ARK1 transgenic seedlings compared with non-transgenic seedlings. The results of transcriptome analysis showed that there were significant differences in transcriptome profiles between the transgenic lines of '717' and '84 K', and between non-transgenic lines (CK) and transgenic plants. The real-time quantitative polymerase chain reaction (RT-qPCR) analysis confirmed the expression levels of the genes involved in the pathway of zeatin biosynthesis and brassinosteroid biosynthesis. The increase in expression levels of AHP and CYCD3 was related to multiple branches. Enhancing the expression of the ARK1 gene in poplar seedlings leads to multiple branches and transcriptomic changes.

19.
Sci Rep ; 10(1): 8549, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444679

RESUMO

Improving wood growth rate and wood quality are worthy goals in forest genetics and breeding research. The ARK1 gene is one member of the ARBORKNOX family in all plants, which play an essential role in the process of plant growth and development, but the mechanism associated with its gene network regulation is poorly investigated. In order to generate over-expression transgenic hybrid poplar, the agrobacterium-mediated transformation was used to obtain transgenic hybrid poplar '717' plants to provide insight into the function of the ARK1 gene in poplar. Moreover, the morphology of transgenic plants was observed, and transcriptome analysis was performed to explore the ARK1 gene function. The results showed that there were significant differences in pitch, stem diameter, petiole length, leaf width, leaf length and seedling height between ARK1 transgenic seedlings and non-transgenic seedlings. The transgenic seedlings usually had multiple branches and slender leaves, with some leaves not being fully developed. The results of transcriptome analysis showed that the differentially expressed genes were involved in the growth of poplars, including proteins, transcription factors and protein kinases. Genes related to the positive regulation in plant hormone signal transduction pathways were up-regulated, and the genes related to lignin synthesis were down-regulated. The RT-qPCR analysis confirmed the expression levels of the genes involved in the plant hormone signal transduction pathways and phenylpropanoid pathway. In conclusion, the ARK1 gene had a positive regulatory effect on plant growth, and the gene's coding enzymes related to lignin synthesis were down-regulated.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Populus/genética , Populus/crescimento & desenvolvimento , Fatores de Transcrição/genética , Transcriptoma
20.
R Soc Open Sci ; 6(11): 191052, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31827844

RESUMO

Actinidia chinensis is a commercially important fruit, and tetraploid breeding of A. chinensis is of great significance for economic benefit. In order to obtain elite tetraploid cultivars, tetraploid plants were induced by colchicine treatment with leaves of diploid A. chinensis 'SWFU03'. The results showed that the best treatment was dipping leaves 30 h in 60 mg l-1 colchicine solutions, with induction rate reaching 26%. Four methods, including external morphology comparison, stomatal guard cell observation, chromosome number observation and flow cytometry analysis were used to identify the tetraploid of A. chinensis. Using the induction system and flow cytometry analysis methods, 187 tetraploid plants were identified. Three randomly selected tetraploid plants and their starting diploid plants were further subjected to transcriptome analysis, real-time quantitative polymerase chain reaction (RT-qPCR) and methylation-sensitive amplification polymorphism (MSAP) analysis. The transcriptome analysis results showed that there were a total of 2230 differentially expressed genes (DEG) between the diploid and tetraploid plants, of which 660 were downregulated and 1570 upregulated. The DEGs were mainly the genes involved in growth and development, stress resistance and antibacterial ability in plants. RT-qPCR results showed that the gene expression levels of the growth and stress resistance of tetraploid plants were higher than those of diploid ones at the transcriptome level. MSAP analysis of DNA methylation results showed that tetraploid plants had lower methylation ratio than diploid ones. The present results were valuable to further explore the epigenetics of diploid and tetraploid kiwifruit plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA